Share this post on:

Occurrence of 5-methylcytosine in human coding and noncoding RNA. Nucleic Acids Res. 2012;40:5023?3. 33. Edelheit S, Schwartz S, Mumbach MR, Wurtzel O, Sorek R. Transcriptomewide mapping of 5-methylcytidine RNA modifications in bacteria, archaea, and yeast reveals m5C within archaeal mRNAs. de Cr y-Lagard V, editor. PLoS Genet. 2013;9:e1003602. 34. Amort T, Souli e MF, Wille A, Jia X-Y, Fiegl H, W le H, et al. Long noncoding RNAs as targets for cytosine methylation. RNA Biol. 2013;10:1003?. 35. Rieder D, Amort T, Kugler E, Lusser A, Trajanoski Z. meRanTK: methylated RNA analysis ToolKit. Bioinformatics. 2016;32:782?. 36. Vasilyev N, Polonskaia A, Darnell JC, Darnell RB, Patel DJ, Serganov A. Crystal structure reveals specific recognition of a G-quadruplex RNA by a -turn in the RGG motif of FMRP. Proc Natl Acad Sci U S A. 2015;112:E5391?00. 37. Duszczyk MM, Wutz A, Rybin V, Sattler M. The Xist RNA A-repeat comprises a novel AUCG tetraloop fold and a platform for multimerization. RNA. 2011;17:1973?2. 38. Betel D, Wilson M, Gabow A, Marks DS, Sander C. The microRNA.org resource: targets and expression. Nucleic Acids Res. 2008;36:D149?3. 39. Yang Y-CT, Di C, Hu B, Zhou M, Liu Y, Song N, et al. CLIPdb: a CLIP-seq database for protein-RNA interactions. BMC Genomics. 2015;16:51. 40. Hoernes TP, Clementi N, Faserl K, Glasner H, Breuker K, Lindner H, et al. Nucleotide modifications within bacterial messenger RNAs regulate their translation and are able to rewire the genetic code. Nucleic Acids Res. 2016;44:852?2. 41. Delatte B, Wang F, Ngoc LV, Collignon E, Bonvin E, Deplus R, et al. RNA biochemistry. Transcriptome-wide distribution and function of RNA hydroxymethylcytosine. Science. 2016;351:282?. 42. Dominissini D, Moshitch-Moshkovitz S, Schwartz S, Salmon-Divon M, Ungar L, Osenberg S, et al. Topology of the human and mouse m6A RNA methylomes revealed by PubMed ID:https://www.ncbi.nlm.nih.gov/pubmed/26778282 m6A-seq. Nature. 2012;485:201?. 43. Fort A, Yamada D, Hashimoto K, Koseki H, Carninci P. Nuclear transcriptome profiling of induced pluripotent stem cells and embryonic stem cells identify non-coding loci resistant to reprogramming. Cell Cycle. 2015;14:1148?5. 44. Aguilo F, Li S, Balasubramaniyan N, Sancho A, Benko S, Zhang F, et al. LinaprazanMedChemExpress Linaprazan Deposition of 5-methylcytosine on enhancer RNAs enables the coactivator function of PGC-1. Cell Rep. 2016;14:479?2. 45. Huber SM, van Delft P, Mendil L, Bachman M, Smollett K, Werner F, et al. Formation and abundance of 5-hydroxymethylcytosine in RNA. ChemBioChem. 2015;16:752?. 46. Hussain S, Aleksic J, Blanco S, Dietmann S, Frye M. Characterizing 5methylcytosine in the mammalian epitranscriptome. Genome Biol. 2013;14:215. 47. Khoddami V, Cairns BR. Transcriptome-wide target profiling of RNA cytosine methyltransferases using the mechanism-based enrichment procedure AzaIP. Nat Protoc. 2014;9:337?1. 48. Shapiro R, Braverman B, Louis JB, Servis RE. Nucleic acid reactivity and conformation. II. Reaction of cytosine and uracil with sodium bisulfite. J Biol Chem. 1973;248:4060?. 49. Fu L, Guerrero CR, Zhong N, Amato NJ, Liu Y, Liu S, et al. Tet-mediated formation of 5-hydroxymethylcytosine in RNA. J Am Chem Soc. 2014;136: 11582?. 50. Huang W, Lan M-D, Qi C-B, Zheng S-J, Wei S-Z, Yuan B-F, et al. Chemical science. R Soc Chem. 2016;7:5495?02.51. Tuorto F, Liebers R, Musch T, Schaefer M, Hofmann S, Kellner S, et al. RNA cytosine methylation by Dnmt2 and NSun2 promotes tRNA stability and protein synthesis. Nat Struct Mol Biol. 2012;19:900?. 52. Blanco S, Frye M. Role of RNA.

Share this post on:

Author: nucleoside analogue